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Abstract. We give several results concerning a Nemytskij operator, generated by
a set-valued functions. We consider two function spaces, namely the C1 and AC spaces
of continuously differentiable, resp., absolutely continuous, set-valued functions. We
prove that the situation in which the Nemytskij operator is Lipschitzian continuous
is characterized by a specific form of a function which generates the operator.
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1. Introduction

All linear spaces considered in this article are assumed to be real. In the following
we shall write I instead of [0, 1].

In 1982 J. Matkowski showed (cf. [15]), that a Nemytskij operator N (which is
defined by the formula φ 7→ N(φ) := g(·, φ(·)), where g is a given function) maps the
function space Lip(I,R) into itself and is Lipschitzian with respect to the Lipschitzian
norm if and only if its generator is of the form

g(x, y) = a(x)y + b(x), x ∈ I, y ∈ R,

for some a, b ∈ Lip(I,R). This result was extended to a lot of spaces by J. Matkowski
and others (cf. e.g. [12, 13, 16]), in particular to the spaces Ck(I,R) and AC(I,R) of
all k-times continuously differentiable, resp., absolutely continuous, functions φ : I →
R (cf. [17]). Recently Matkowski has shown (cf. [18]) that if we only assume that
the operator N is uniformly continuous, then the generator g is of the form above.
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Set-valued versions of Matkowski’s results were investigated for instance in papers
[5, 6, 7, 9, 10, 11, 19, 23, 24] and [25]. The main goal of this paper is to examine
a set-valued analogue of Matkowski’s result in the cases of the C1 and AC spaces.

If (Z, || · ||Z) is a normed space, then by cc(Z) we denote the space of all non-
empty, compact and convex subsets of Z. If A and B are subsets of Z, then we define
A+ B := {a+ b : a ∈ A, b ∈ B} and αA := {αa : a ∈ A}, where α ∈ R. Moreover, if
α, β ∈ R and A,B ∈ cc(Z), then

α(A +B) = αA+ αB, α(βA) = (αβ)A, 1A = A,

and if α, β > 0, then (α+ β)A = αA+ βA.
Let d denote the Hausdorff metric on the space cc(Z), defined by the fromula

d(A,B) := inf{t > 0 : A ⊆ B + tS, B ⊆ A+ tS},

where S is a closed unit ball in the space Z.
If A ∈ cc(Z), then let us define ||A||cc(Z) as follows:

||A||cc(Z) := sup{||z||Z : z ∈ A}. (1)

Moreover, if C is a non-empty subset of a real linear space, then we shall say that
C is a convex cone, if it satisfies the following two conditions: C+C ⊆ C and λC ⊆ C

for all λ > 0.

Lemma 1.1 ([21], Lemma 2). Let Z be a normed space. If A,B and C are non-empty,
compact and convex subsets of Z, then d(A +B,A+ C) = d(B,C).

Lemma 1.2 ([20], Theorem 5.6, p. 64). Let Y be a vector space and let Z be a Haus-
dorff topological vector space. Moreover, let C be a convex cone in Y . A set-valued
function F defined on C, with non-empty and compact values in Z, satisfies the Jensen
equation

F
(1
2
(y1 + y2)

)
=

1

2

(
F (y1) + F (y2)

)
, y1, y2 ∈ C,

if and only if there exist an additive set-valued function A, defined on C with non-
empty, compact and convex values in Z and a non-empty, compact and convex subset
B of Z such that F (y) = A(y) +B, y ∈ C.

Theorem 1.3 ([21]). For every normed linear space Z there exists a normed linear
space (VZ , ||·||VZ

) and an isometric embedding π : cc(Z) → VZ , where cc(Z) is endowed
with the Haussdorf distance d, for which π(cc(Z)) is a convex cone in VZ and the
conditions

π(cc(Z))− π(cc(Z)) = VZ

π(A+B) = π(A) + π(B) (2)

π(αA) = απ(A)

are satisfied for A,B ∈ cc(Z), α > 0. Moreover, VZ is essentialy unique, i.e. if V 1
Z and

V 2
Z are normed linear spaces and π1 : cc(Z) → V 1

Z , π
2 : cc(Z) → V 2

Z are embeddings
which satisfy the above conditions, then there exists exactly one isometric isomorphism
T : V 1

Z → V 2
Z for which T ◦ π1 = π2.
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If E,E′ are arbitrary non-empty sets, by F(E,E′) we denote the set of all functions
f : E → E′. Every function g : I ×E → E′ generates the so-called Nemytskij operator
N : F(I, E) → F(I, E′), defined by the formula

(Nφ)(x) := g(x, φ(x)), φ ∈ F(I, E), x ∈ I. (3)

For a function A : I × C → cc(Z) we shall write Ay = A(·, y), Ax = A(x, ·), x ∈
I, y ∈ C. Thus Ay : I → cc(Z) for y ∈ C and Ax : C → cc(Z) for x ∈ I.

Let Y, Z be normed linear spaces, and let C be a convex cone in Y (C is endowed
with the metric induced from Y ). Consider the set

L(C, cc(Z)) := {A : C → cc(Z) : A is additive and continuous}.

The formula

dL(A,B) := sup
y∈C\{0}

d(A(y), B(y))

||y||Y
(4)

defines a metric in L(C, cc(Z)) (cf. [23] and [25]). Next the functional

||A||L := sup
y∈C\{0}

||A(y)||cc(Z)

||y||Y
, A ∈ L(C, cc(Z)), (5)

is not a norm, since L(C, cc(Z)) with addition and multiplication by real scalars,
defined in the usual way, is not a vector space (except the case that Z is a single-
point space).

Lemma 1.4 ([22], Lemma 5). Let Y and Z be normed linear spaces and let C be
a convex cone in Y with nonempty interior. Then there exists a positive constant M0

such that for every additive and continuous set-valued function F : C → cc(Z) (in
particular, for the functions the values of which are singletons) the inequality

d(F (y1), F (y2)) 6 M0||F ||L||y1 − y2||Y

holds.

By L(Y, V ) we denote the normed space of all continuous linear operators, which
act on the normed space Y and with the values in normed space V .

Lemma 1.5. Let V be a real normed space and let C be a convex cone with nonempty
interior in a real normed space Y . If a function A : C → V is additive and continuous
then there exists exactly one linear and continuous extention A : Y → V of a function
A such that ||A||L(Y,V ) 6 M0||A||L (for a constant M0 see Lemma 1.4).

Proof. Let y ∈ Y . It is easy to observe that there exist y1, y2 ∈ C such that y = y1−y2.
Let us define

A(y) := A(y1)−A(y2).

It is easly seen that this definition is correct and, moreover, A is linear and continuous
extension of A. The uniqueness of the extension of A is obvious. To complete the proof
we have to show that

||A||L(Y,V ) 6 M0||A||L. (6)
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Let y ∈ Y and let y = y1 − y2, for y1, y2 ∈ C; from Lemma 1.4 we get

||A(y)||V = ||A(y1)−A(y2)||V 6 M0||A||L||y1 − y2||Y = M0||A||L||y||Y ,

and hence (6) is verified. ⊓⊔

If (V, || · ||V ) is a real normed linear space then by C1(I, V ) we denote the space of
all continuously differentiable vector-functions φ : I → V . Moreover, for a non-empty
subset C ⊆ V , by C1(I,C) we denote the set of all functions φ ∈ C1(I, V ) such
that φ(I) ⊆ C. Now let ||φ||Lip(I,V ) and ||φ||C1(I,V ) denote the norms on the space
C1(I, V ), defined as follows

||φ||Lip(I,V ) := ||φ(0)||V + sup
x1 6=x2

||φ(x1)− φ(x2)||V
|x1 − x2|

,

||φ||C1(I,V ) := ||φ(0)||V + sup
x∈[0,1]

||φ′(x)||V ;

the second supremum is finite since φ is continuously differentiable and I is a compact
set. The first supremum above is also finite; it follows directly from the Mean Value
Theorem

||φ(x1)− φ(x2)||V
|x1 − x2|

6 sup
x∈[x1,x2]

||φ′(x)||V . (7)

Moreover, from inequality (7) we get (cf. [13]):

||φ||Lip(I,V ) 6 ||φ||C1(I,V ).

Now, let F be a function defined on the interval I with the values in cc(Z). From
many definitions of differentiability of set-valued functions we choose the definition
due to Banks and Jacobs (cf. [2]); we shall say that F is π-differentiable at x0 ∈ I, if the
vector-function π◦F is differentiable at x0 (for π see Theorem 1.3; the differentiability
defined in this way does not depend on the chosen π.) We define the space C1(I, cc(Z))
as follows

C1(I, cc(Z)) := {F ∈ cc(Z)I : π ◦ F ∈ C1(I, VZ)}.

Let us note that if F belongs to the space C1(I, cc(Z)) then F ∈ C(I, cc(Z)), i.e. F is
continuous. On the space C1(I, cc(Z)) the metric may be defined as follows

dC1(I,cc(Z))(F1, F2) := ||π ◦ F1 − π ◦ F2||C1(I,VZ),

where F1, F2 ∈ C1(I, cc(Z)).

2. Main results

Theorem 2.1. Let Y, Z be normed linear spaces and C be a convex cone in Y .
Assume that the Nemytskij operator N generated by G : I ×C → cc(Z) satisfies the
following conditions

1) N : C1(I,C) → C1(I, cc(Z)),



Nemytskij operator, R̊adström embedding and set-valued functions 223

2) there exists L > 0 such that

dC1(I,cc(Z))(Nφ1, Nφ2) 6 L||φ1 − φ2||C1(I,Y ), φ1, φ2 ∈ C1(I,C). (8)

Then there exist functions A : I ×C → cc(Z), B : I → cc(Z) such that B,Ay belongs
to the space C1(I, cc(Z)) for every y ∈ C, the function Ax is additive and Lipschitzian
for every x ∈ I and

G(x, y) = A(x, y) +B(x), x ∈ I, y ∈ C.

Moreover the function I ∋ x 7→ Ax ∈ L(C, cc(Z)) satisfies the Lipschitz condition
with the constant L, i.e.

dL(A
x1 , Ax2) 6 L|x1 − x2| x1, x2 ∈ I. (9)

Remark 2.2. Since in the course of the proof of Theorem 2.1 R̊adström embedding
is applied, it is natural to ask, whether this theorem is a conclusion from its vector-
valued analogue (cf. [17]). The answer, as is easy to see, is “no” – if we formulate
the vector-valued analogue and try to prove Theorem 2.1 as a corollary from this
analogue, then the crucial step depends on whether the difference of two vectors from
the cone is another vector from this cone. Without more detailed information on these
vectors we can not generally give a positive answer.

Proof. Let us note, that G(·, y) ∈ C1(I, cc(Z)). To see that let us fix y ∈ C and
set φ1(x) = y, x ∈ I. By 1) and from the definition of N we get Nφ1 = g(·, y) ∈
C1(I, cc(Z)). In particular G is continuous with respect to the first variable.

Now, let us take x1, x2 ∈ I such that 0 6 x1 < x2 6 1 and let u, v ∈ C. Consider
two functions φ1, φ2 : I → Y defined by

φ1(x) := y1 + α(x)[y2 − y1], (10)

φ2(x) := ỹ1 + α(x)[ỹ2 − ỹ1], (11)

where α is an arbitrary function from the space C1(I, I) for which equalities α(x1) =
0, α(x2) = 1 holds and y1 = ỹ2 := (u + v)/2, y2 := v, ỹ1 := u. Note that φ1, φ2 ∈
C1(I,C) and ||φ1 − φ2||C1(I,Y ) = ||(v − u)/2||Y . Thus, from 2) we get

dC1(I,cc(Z))(Nφ1, Nφ2) 6 L||(v − u)/2||Y .

Hence, from the definition of the metric dC1(I,cc(Z)) and from inequality (7), there
holds

|x1 − x2|
−1||(π ◦Nφ1 − π ◦Nφ2)(x1)− (π ◦Nφ1 − π ◦Nφ2)(x2)||VZ

6

6 L||(v − u)/2||Y .

Thus, from the definition of the Nemytskij operator, we get

||π(G(x1,
u+ v

2
)) + π(G(x2,

u+ v

2
))− [π(G(x1, u)) + π(G(x2, v))]||VZ

6

6 L
||v − u||Y

2
|x1 − x2|,
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and since π is an isometry we infer

d(G(x1,
u+ v

2
) +G(x2,

u+ v

2
), G(x1, u)) +G(x2, v)) 6 L

||v − u||Y
2

|x1 − x2|.

Now, letting x1, x2 → x, where x is an arbitrary point of the interval I, we get (since
G is continuous with respect to the first variable)

G(x,
u+ v

2
) =

1

2
[G(x, u) +G(x, v)]

and from Lemma 1.2 there is

G(x, y) = A(x, y) +B(x), (12)

where A : I ×C → cc(Z), B : I → cc(Z) and A is additive with respect to the second
variable.

To prove that B ∈ C1(I, cc(Z)), let us note that

G(x, 0) = A(x, 0) +B(x) = {0}+B(x) = B(x),

and G(·, 0) ∈ C1(I, cc(Z)). Now we shall prove that Ay ∈ C1(I, cc(Z)) for every
y ∈ C. From equalities (2) and (12) and from definition (3) we get

π(Nφ1(x)) = π(G(x, y)) = π(A(x, y)) + π(B(x)),

where φ1(x) = y for x ∈ I. Hence π ◦Ay = π ◦Nφ1 − π ◦ B. Since π ◦Nφ1, π ◦ B ∈
C1(I, VZ), thus π ◦ Ay ∈ C1(I, VZ), which mplies that Ay ∈ C1(I, cc(Z)) for every
y ∈ C.

Now we shall prove that the inequality

d(G(x, y), G(x, ỹ)) 6 L||y − ỹ||Y , x ∈ I, y, ỹ ∈ C (13)

holds. Let us fix x ∈ I, y, ỹ ∈ C. Define φ1, φ2 : I → C as follows: φ1(t) = y, φ2(t) = ỹ
for t ∈ I. It is obvious that φ1, φ2 ∈ C1(I,C). Let us note that ||φ1 − φ2||C1(I,Y ) =
||y − ỹ||Y . According to Lemma 1.1 we get

d(G(x, y), G(x, ỹ)) = d(G(x, y) +G(0, ỹ), G(x, ỹ) +G(0, ỹ)) 6

6 d(G(x, y) +G(0, ỹ), G(x, ỹ) +G(0, y)) + d(G(x, ỹ) +G(0, y), G(x, ỹ) +G(0, ỹ)) =

= d(G(0, y), G(0, ỹ)) + d(G(x, y) +G(0, ỹ), G(0, y) +G(x, ỹ)).

Since π is an isometry, we get

d(G(0, y), G(0, ỹ)) = ||π((G(0, y)) − π(G(0, ỹ)))||VZ
=

= ||(π ◦Nφ1)(0)− (π ◦Nφ2)(0)||VZ
= ||(π ◦Nφ1 − π ◦Nφ2)(0)||VZ

.



Nemytskij operator, R̊adström embedding and set-valued functions 225

Moreover from Mean Value Theorem we obtain

d(G(x, y) +G(0, ỹ), G(0, y) +G(x, ỹ)) =

= ||π((G(x, y)) + π((G(0, ỹ))− π((G(0, y)) − π((G(x, ỹ))||VZ
=

= ||π((G(x, y)) − π((G(x, ỹ))− [π((G(0, y)) − π((G(0, ỹ))]||VZ
=

= ||π(Nφ1(x)) − π(Nφ2(x)) − [π(Nφ1(0))− π(Nφ2(0))]||VZ
=

= ||π ◦Nφ1(x)− π ◦Nφ2(x) − [π ◦Nφ1(0)− π ◦Nφ2(0)]||VZ
=

= ||(π ◦Nφ1 − π ◦Nφ2)(x)− (π ◦Nφ1 − π ◦Nφ2)(0)||VZ
6

6 sup
t∈[0,x]

||(π ◦Nφ1 − π ◦Nφ2)
′(t)||VZ

(x− 0) 6

6 sup
t∈I

||(π ◦Nφ1 − π ◦Nφ2)
′(t)||VZ

.

Thus from (8) we get

d(G(x, y), G(x, ỹ)) 6 ||(π◦Nφ1−π◦Nφ2)(0)||VZ
+sup

t∈I

||(π◦Nφ1−π◦Nφ2)
′(t)||VZ

=

= ||(π ◦Nφ1 − π ◦Nφ2)||C1(I,VZ) = dC1(I,cc(Z))(Nφ1, Nφ2) 6 L||y − ỹ||Y ,

which completes the proof of inequality (13). Now from (12) and from Lemma 1.1 we
get

d(Ax(y), Ax(ỹ)) = d(A(x, y), A(x, ỹ)) = d(A(x, y) +B(x), A(x, ỹ) +B(x)) =

= d(G(x, y), G(x, ỹ)) 6 L||y − ỹ||Y ,

and we conclude that Ax is Lipschitzian.
Finally, we shall prove that (9) holds. Let z, w ∈ C and let φ1, φ2 be given by (10)

and (11), where y1 = ỹ2 = z + w, y2 = 2z + w, ỹ1 = w. Then (φ1 − φ2)(x) = z for
x ∈ I. Hence, from (8) and from Mean Value Theorem we obtain

||π(G(x1, y1) +G(x2, ỹ2))− π(G(x1, ỹ1) +G(x2, y2))||VZ
6 L||y1 − y2||Y |x1 − x2|.

Thus

d(G(x1, z + w) +G(x2, z + w), G(x1, w) +G(x2, 2z + w)) 6 L||z||Y |x1 − x2|.

From (12) and from additivity of function Ax for x ∈ I we get

d(A(x1, z), A(x2, z)) 6 L||z||Y |x1 − x2|.

Thus

dL(A
x1 , Ax2) = sup

z∈C\{0}

d(Ax1(z), Ax2(z))

||z||Y
6 L|x1 − x2|,

which completes the proof. ⊓⊔

Remark 2.3. It is possible to formulate this theorem in a stronger form, assum-
ing only uniform continuity of N , instead of satisfying the Lipschitz condition – see
Theorem 2.6 and its proof.
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Theorem 2.4. Let Y and Z be normed linear spaces, let C be a convex cone with
nonempty interior in the space Y and let A,B be given functions such that A : I×C →
cc(Z) and B : I → cc(Z). Assume that Ay, B belong to the space C1(I, cc(Z)) for
y ∈ C and Ax belongs to the space L(C, cc(Z)) for x ∈ I. Moreover, let the function
I ∋ x 7→ Ax ∈ L(C, cc(Z)) satisfies the Lipschitz condition, i.e. there exists a constant
L > 0 such that

dL(A
x1 , Ax2) 6 L|x1 − x2|, x1, x2 ∈ I. (14)

If we define the function G : I ×C → cc(Z) in the following way

G(x, y) = A(x, y) +B(x), x ∈ I, y ∈ C,

then the Nemytski operator N generated by G maps the set C1(I,C) into the space
C1(I, cc(Z)) and satisfies the Lipschitz condition, i.e., there exists a constant L′ > 0
such that

dC1(I,cc(Z))(Nφ1, Nφ2) 6 L′||φ1 − φ2||C1(I,Y ), φ1, φ2 ∈ C1(I,C). (15)

Proof. Let x1, x2 ∈ I. Since π ◦ Ax1 , π ◦ Ax2 are additive and continuous, so is π ◦
Ax1 − π ◦Ax2 . We shall prove now that the following inequality holds

||π ◦Ax1 − π ◦Ax2 ||L 6 L|x1 − x2|. (16)

Let y ∈ C. From (4) and (14) we get

d(Ax1(y), Ax2(y)) 6 L||y||Y |x1 − x2|,

whence, as π is an isometry

||[π ◦Ax1 − π ◦Ax2 ](y)||VZ
6 L||y||Y |x1 − x2|.

Thus, according to (1) and (5), (16) holds. Now let x ∈ I. By Lemma 1.5 there is
exactly one linear, continuous function π ◦Ax : Y → VZ such that

π ◦Ax(y) = π ◦Ax(y) for y ∈ C.

We shall prove now that the function

I ∋ x 7→ π ◦Ax ∈ L(Y, VZ) (17)

satisfies the Lipschitz condition. Let x1, x2 ∈ I. Obviously

π ◦Ax1 − π ◦Ax2 = π ◦Ax1 − π ◦Ax2 .

Hence, from Lemma 1.5 and (6), we infer

||π ◦Ax1 − π ◦Ax2 ||L(Y,VZ) = ||π ◦Ax1 − π ◦Ax2 ||L(Y,VZ) 6

6 M0||π ◦Ax1 − π ◦Ax2 ||L 6 M0L|x1 − x2|,
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and thus we get

||π ◦Ax1 − π ◦Ax2 ||L(Y,VZ) 6 M0L|x1 − x2|. (18)

Now we shall prove that the following inequality

||(π ◦Ay1
)′(x)− (π ◦Ay2

)′(x)||VZ
6 M0L||y1 − y2||Y (19)

holds for x ∈ I and y1, y2 ∈ C. Let h ∈ R, h 6= 0 and let x + h ∈ I. From inequality
(18) we get

||(π ◦Ay1
)(x+ h)− (π ◦Ay1

)(x) − [(π ◦Ay2
)(x + h)− (π ◦Ay2

)(x)]||VZ
=

= ||π(A(x + h, y1))− π(A(x + h, y2))− [π(A(x, y1))− π(A(x, y2))]||VZ
=

= ||π ◦Ax+h(y1)− π ◦Ax+h(y2)− [π ◦Ax(y1)− π ◦Ax(y2)]||VZ
=

= ||[π ◦Ax+h − π ◦Ax](y1 − y2)||VZ
6 M0L|h|||y1 − y2||Y ,

whence

∣∣∣
∣∣∣
(π ◦Ay1

)(x+ h)− (π ◦Ay1
)(x)

h
−

(π ◦Ay2
)(x + h)− (π ◦Ay2

)(x)

h

∣∣∣
∣∣∣
VZ

6

6 M0L||y1 − y2||Y .

Letting t → 0 we get (19).
Now, we shall prove that the derivative of the function π ◦ Nφ : I → VZ at any

point x0 ∈ I is given by the following formula

(π ◦Nφ)′(x0) = (π ◦B)′(x0) + (π ◦Aφ(x0))
′(x0) + π ◦Ax0 (φ′(x0)). (20)

Indeed, applaying in turn the definition of the derivative, the triangle inequality
and equalities (2) and (3) we get

||(π ◦Nφ)(x0 + h)− (π ◦Nφ)(x0)− h(π ◦B)′(x0)−

− h(π ◦Aφ(x0))
′(x0)− h[π ◦Ax0(φ′(x0))]||VZ

=

= ||π(A(x0 + h, φ(x0 + h)) +B(x0 + h))− π(A(x0, φ(x0)) +B(x0))−

− h(π ◦B)′(x0)− h(π ◦Aφ(x0))
′(x0)− h[π ◦Ax0(φ′(x0))]||VZ

6

6 ||(π ◦B)(x0 + h)− (π ◦B)(x0)− h(π ◦B)′(x0)||VZ
+ || − h[π ◦Ax0(φ′(x0))] +

+ π(A(x0 + h, φ(x0 + h)))− π(A(x0, φ(x0))) − h(π ◦Aφ(x0))
′(x0)||VZ

6

6 o(h) + ||π(A(x0 + h, φ(x0)))− π(A(x0, φ(x0)))− h(π ◦Aφ(x0))
′(x0)||VZ

+

+ ||π(A(x0 + h, φ(x0 + h)))− π(A(x0 + h, φ(x0))) − h[π ◦Ax0(φ′(x0))]||VZ
6

6 o(h) + ||(π ◦Aφ(x0))(x0 + h))− (π ◦Aφ(x0))(x0))− h(π ◦Aφ(x0))
′(x0)||VZ

+

+ ||π(A(x0, φ(x0 + h))− π(A(x0, φ(x0))− h[π ◦Ax0(φ′(x0))] +

+ π(A(x0 + h, φ(x0 + h))− π(A(x0, φ(x0 + h))−

− π(A(x0 + h, φ(x0)) + π(A(x0, φ(x0))||VZ
6

6 o(h) + o(h) + ||(π ◦Ax0)(φ(x0 + h))− (π ◦Ax0)(φ(x0))−hπ ◦Ax0(φ′(x0))||VZ
+
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+ ||(π ◦Ax0+h)(φ(x0 + h))− (π ◦Ax0+h)(φ(x0)) −

− (π ◦Ax0)(φ(x0 + h)) + (π ◦Ax0)(φ(x0))||VZ
6

6 o(h) + ||π ◦Ax0(φ(x0 + h))− π ◦Ax0(φ(x0))− π ◦Ax0(φ′(x0)(h))||VZ
+

+ ||π ◦Ax0+h(φ(x0 + h))− π ◦Ax0+h(φ(x0))−

− π ◦Ax0(φ(x0 + h)) + π ◦Ax0(φ(x0))||VZ
6

6 o(h) + ||π ◦Ax0 [φ(x0 + h)− φ(x0)− φ′(x0)(h)]||VZ
+

+ ||π ◦Ax0+h [φ(x0 + h)− φ(x0)] + π ◦Ax0 [φ(x0 + h)− φ(x0)]||VZ
6

6 o(h) + ||π ◦Ax0 [φ(x0 + h)− φ(x0)− φ′(x0)(h)]||VZ
+

+ ||[π ◦Ax0+h − π ◦Ax0 ](φ(x0 + h)− φ(x0))||VZ
6

6 o(h) + ||π ◦Ax0 ||L(Y,VZ) ||[φ(x0 + h)− φ(x0)− φ′(x0)(h)]||Y +

+ ||[π ◦Ax0+h − π ◦Ax0 ]||L(Y,VZ) ||(φ(x0 + h)− φ(x0))||Y , (21)

where o(h) is the Landau symbol.
Let us note that there exists a constant M > 0 such that ||π ◦Ax||L(Y,VZ) 6 M for

all x ∈ I, since the function (17) is continuous and its domain is a compact set. Now
let us write φ(x0 + h) = φ(x0) + hφ′(x0) + |h|f(h), where ||f(h)||Y → 0 for h → 0.
Thus, from inequality (18), (21) is less than or equal to

o(h) +Mo(h) +M0L[φ
′(x0) + f(h)] |h|2 = o(h),

which completes the proof of (20). Moreover, (20) implies that N maps the set
C1(I,C) into the space C1(I, cc(Z)).

Now we shall prove that there exists a constant L′ > 0 such that (15) holds. Let
φ1 and φ2 belong to the space C1(I,C). From the definition of the metric dC1(I,cc(Z))

and from the definition of the norm || · ||C1(I,VZ) we get

dC1(I,cc(Z))(Nφ1, Nφ2) = ||π ◦Nφ1 − π ◦Nφ2||C1(I,VZ) =

= ||(π ◦Nφ1)(0)− (π ◦Nφ2)(0)||VZ
+ sup

x∈I

||(π ◦Nφ1)
′(x)− (π ◦Nφ2)

′(x)||VZ
.

According to (19) and (20) we infer

||(π ◦Nφ1)
′(x0)− (π ◦Nφ2)

′(x0)||VZ
6

6 ||(π ◦Aφ1(x0))
′(x0)− (π ◦Aφ2(x0))

′(x0)||VZ
+

+ ||π ◦Ax0 (φ′
1(x0))− π ◦Ax0 (φ′

2(x0))||VZ
6

6 M0L||φ1(x0)− φ2(x0)||Y + ||π ◦Ax0 [φ′
1(x0)− φ′

2(x0)]||VZ
.

It is easily seen that ||φ1(x0)− φ2(x0)||Y 6 ||φ1 − φ2||C1(I,Y ), thus

sup
x∈I

||(π ◦Nφ1)
′(x)− (π ◦Nφ2)

′(x)||VZ
6

6 M0L||φ1 − φ2||C1(I,Y ) +M sup
x∈I

||(φ1 − φ2)
′(x)||Y .
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Moreover,

||(π ◦Nφ1)(0)− (π ◦Nφ2)(0)||VZ
=

= ||π(A(0, φ1(0)) +B(0))− π(A(0, φ2(0)) +B(0))||VZ
=

= ||π ◦A0(φ1(0))− π ◦A0(φ2(0))||VZ
6 ||π ◦A0||L(Y,VZ) ||(φ1 − φ2)(0)||Y 6

6 M ||(φ1 − φ2)(0)||Y .

It follows that
dC1(I,cc(Z))(Nφ1, Nφ2) 6 L′||φ1 − φ2||C1(I,Y ),

where L′ := M +M0L (> 0). ⊓⊔

Now lets turn our attention to absolutely continuous functions with values in the
space cc(R). For brevity, in the following we shall write K instead of cc(R). Thus
K consists of all non-empty, compact intervals (including degenerate ones) in R. For
I, J ∈ K and α ∈ R we define I+J := {x+x′ : x ∈ I, x′ ∈ J} and αI := {αx : x ∈ I}.
It is clear that if [a, b], [c, d] ∈ K and α > 0, then

[a, b] + [c, d] = [a+ c, b+ d],

α[a, b] = [αa, αb].

Of course we have
d([a, b], [c, d]) = max{|a− c|, |b− d|}.

Now consider the norm || · || in R
2, defined by

||(x, y)|| := max{|x|, |y|}, (x, y) ∈ R
2,

and the map
π : K ∋ [a, b] 7→ (a, b) ∈ R

2. (22)

It is clear that the following relations

π([a, b] + [c, d]) = π([a, b]) + π([c, d]),

π(α[a, b]) = απ([a, b]) for α > 0,

d([a, b], [c, d]) = ||π([a, b])− π([c, d])||,

R
2 = π(K)− π(K)

hold. Thus, K can be embedded into the (of course, complete and reflexive) space
R

2, endowed with the maximum norm (cf. [11]). Moreover, a space into which K
is embedded in the above fashion is unique up to isometrical isomorphism – see
Theorem 1.3.

A function φ : I → Y is said to be absolutely continuous (cf. [3], p. 15), if for every
ǫ > 0 there exists δ > 0 such that for any positive integer N and a disjoint family of
intervals (α1, β1), (α2, β2), . . . , (αN , βN) in I whose lengths satisfy

∑N

i=1(βi−αi) < δ,

the inequality
∑N

i=1 ||φ(βi)−φ(αi)||Y < ǫ holds true. We define absolute continuity of
a set-valued function F : I → K in a similar manner; instead of the distance generated
by the norm || · ||Y , we consider the Hausdorff distance in K. We denote the space of
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all absolutely continuous functions defined on the interval I and with the values in
the space Y by AC(I, Y ). Moreover, for a subset C ⊆ Y , by AC(I,C) we denote the
set of all functions φ ∈ AC(I, Y ) such that φ(I) ⊆ C.

Lemma 2.5 ([4], p. 44, Theorem 3.4). Let Y be a reflexive Banach space and let
a function φ : I → Y be absolutely continuous. Then φ is differentiable a.e. on the
interval I (with respect to the Lebesgue measure), φ′ is integrable in the sense of
Bochner and

φ(x) − φ(a) =

∫

[a,x]

φ′(t)dt for a, x ∈ I.

Now, let (Y, ||·||Y ) be a reflexive Banach space and let us define the norm ||·||AC(I,Y )

in the space AC(I, Y ) in the following way

||φ||AC(I,Y ) := ||φ(0)||Y +

∫

[0,1]

||φ′(t)||Y dt; (23)

since φ′ is integrable the integral in (23) is finite. It is easy to see, that the following
relation holds

F ∈ AC(I,K) ⇔ π ◦ F ∈ AC(I,R2),

where π is the R̊adström embedding (22). Since the function π is invertible, thus the
formula

dAC(I,K)(F1, F2) := ||π ◦ F1 − π ◦ F2||AC(I,R2), F1, F2 ∈ AC(I,K), (24)

defines a metric in AC(I,K).
Now we shall formulate the following set-valued analogue of the J. Matkowski’s

result (cf. [17], Theorem 1 and [18]).

Theorem 2.6. Let Y be a reflexive Banach space and let C be a convex cone in
Y . Assume that the Nemytskij operator N generated by G : I × C → K maps the
set AC(I,C) into the space AC(I,K) and is uniformly continuous. Then there exist
functions A : I → L(C,K), B : I → K such that B and A(·) y belong to the space
AC(I,K) for every y ∈ C, the function A(x)(·) is uniformly continuous for every
x ∈ I and

G(x, y) = A(x)y +B(x), x ∈ I, y ∈ C.

Also, if we assume that there exists L > 0, such that

dAC(I,K)(Nφ1, Nφ2) 6 L||φ1 − φ2||AC(I,Y ), φ1, φ2 ∈ AC(I,C), (25)

then the function A(x) satisfies the Lipschitz condition with the constant L for every
x ∈ I.

Proof. Let us note, that G(·, y) ∈ AC(I,K). To see that let us fix y ∈ C and set
φ1(x) = y, x ∈ I. From the definition of N and assumption, that N maps the set
AC(I,C) into the space AC(I,K), we get Nφ1 = G(·, y) ∈ AC(I,K). In particular G
is continuous with respect to the first variable.

Now, let us take x1, x2, ..., x2n ∈ I such that 0 6 x1 < x2 < ... < x2n 6 1 and
let u, v ∈ C. Moreover, let us define y1 = y2 := (u + v)/2, y2 := v, y1 := u. Consider
a function φ1 : I → Y defined by
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φ1(x) =





y1 for x ∈ [0, x1],

y1 +
x−x2i−1

x2i−x2i−1
[y1 − y1] for x ∈ [x2i−1, x2i],

y1 +
x−x2i

x2i+1−x2i
[y1 − y1] for x ∈ [x2i, x2i+1],

y1 for x ∈ [x2n, 1],

(26)

Moreover, let us define a function φ2 : I → Y , by putting y2, y2 instead of y1, y1,
respectively, in definition (34). It is not difficult to check that φ1, φ2 ∈ AC(I,C)
and ||φ1 − φ2||AC(I,Y ) = ||(v − u)/2||Y . Now, let us note (cf. [18]), that there exists
a function γ : [0,+∞) → [0,+∞), which is continuous at 0, satisfies the condition
γ(0) = 0, and, moreover, for which the inequality

dAC(I,K)(Nφ1, Nφ2) 6 γ( ||φ1 − φ2||AC(I,Y )), φ1, φ2 ∈ AC(I,C)

holds; in fact, we can take

γ(t) := sup{dAC(I,K)(Nφ1, Nφ2) : φ1, φ2 ∈ AC(I, C), ||φ1 − φ2||AC(I,Y ) 6 t}.

It is not difficult to show, that uniform continuity of N implies, that the values of γ
are finite, γ(0) = 0 and γ is continuous at 0. Thus, from Lemma 2.5, (23) and (24)
we get

γ( ||(v − u)/2||Y ) > dAC(I,K)(Nφ1, Nφ2) >

∫

I

||(π ◦Nφ1 − π ◦Nφ2)
′(t)||dt >

>

2n−1∑

k=1

||

∫

[xk,xk+1]

(π ◦Nφ1 − π ◦Nφ2)
′(t)dt|| =

=

2n−1∑

k=1

||π ◦Nφ1(xk+1)− π ◦Nφ2(xk+1)− π ◦Nφ1(xk) + π ◦Nφ2(xk)|| =

=

2n−1∑

k=1

||π(G(xk+1 , φ1(xk+1)))− π(G(xk+1 , φ2(xk+1)))−

− π(G(xk , φ1(xk))) + π(G(xk , φ2(xk)))|| =

=
n∑

k=1

||π(G(x2k , y2)) + π(G(x2k−1 , y1))− π(G(x2k, y1))− π(G(x2k−1 , y2))||+

+
n−1∑

k=1

||π(G(x2k , y2)) + π(G(x2k+1, y1))− π(G(x2k , y1)) − π(G(x2k+1, y2))||.

Let x be an arbitrary point of interval I and let xk → x for all k = 1, 2, . . . , 2n− 1.
From the continuity of G with respect to the first variable and from the definitions of
y1, y2, y1, y2, we infer that

(2n− 1)||π(G(x, (u + v)/2) + π(G(x, (u + v)/2)− π(G(x, u)) − π(G(x, v))|| 6

6 γ( ||(v − u)/2||Y ).
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According to the fact that π is an isometry, we obtain

d
(
G
(
x,

u+ v

2

)
+G

(
x,

u+ v

2

)
, G(x, u) +G(x, v)

)
6

1

2n− 1
γ
( ∣∣∣

∣∣∣
v − u

2

∣∣∣
∣∣∣
Y

)
,

and the above inequality holds for each positive integer n. Hence we get

G(x, (u + v)/2) = [G(x, u) +G(x, v)]/2

for arbitrary x from I and u, v from C, i.e. G satisfies the Jensen equation with respect
to the second variable. By virtue of Lemma 1.2 we obtain

G(x, y) = A(x)y +B(x), (27)

where B : I → K and A(x) : C → K, for every x ∈ I.
To prove that B ∈ AC(I,K), let us note that

G(x, 0) = A(x)0 +B(x) = {0}+B(x) = B(x).

Moreover, G(·, 0) = Nφ, where the function φ : I → C is given by φ(x) = 0 for x ∈ I.
Since N takes its values in the space AC(I,K), B is absolutely continuous.

Now we shall prove that A(·)y ∈ AC(I,K) for y ∈ C. Fix y ∈ C. Let us consider
a function φ : I → C given by φ(x) = y for x ∈ I. From definition (3), equality (27)
and from additivity of π we get

π(Nφ(x)) = π(G(x, y)) = π(A(x)y) + π(B(x)).

Hence π ◦ A(·)y = π ◦ Nφ − π ◦ B. Moreover π ◦ Nφ, π ◦ B ∈ AC(I,R2). Thus
π ◦A(·)y ∈ AC(I,R2), which implies that A(·)y ∈ AC(I,K).

Now we shall prove that the inequality

d(G(x, y1), G(x, y2)) 6 γ( ||y1 − y2||Y ), x ∈ I, y1, y2 ∈ C (28)

holds. Let us fix x ∈ I, y1, y2 ∈ C. Define φ1, φ2 : I → C as follows: φ1(t) = y1, φ2(t) =
y2 for t ∈ I. It is obvious that φ1, φ2 ∈ AC(I,C). Let us note that ||φ1−φ2||AC(I,Y ) =
||y1 − y2||Y . Since π is an isometry, from triangle inequality we get

d(G(x, y1), G(x, y2)) = ||π(G(x, y1))− π(G(x, y2))|| 6

6 ||π(G(0, y1))− π(G(0, y2))|| +

+ ||π(G(x, y1))− π(G(x, y2))− [π(G(0, y1))− π(G(0, y2))]||.

Moreover, since

d(G(0, y1), G(0, y2)) = ||(π ◦Nφ1 − π ◦Nφ2)(0)||

and

||π(G(x, y1)) − π(G(x, y2))− [π(G(0, y1))− π(G(0, y2))]|| =

= ||(π ◦Nφ1 − π ◦Nφ2)(x) − (π ◦Nφ1 − π ◦Nφ2)(0)|| =

=
∣∣∣
∣∣∣
∫

[0,x]

(π ◦Nφ1 − π ◦Nφ2)
′(t)dt

∣∣∣
∣∣∣ 6

∫

I

||(π ◦Nφ1 − π ◦Nφ2)
′(t)||dt,
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we have

d(G(x, y1), G(x, y2)) 6

6 ||(π ◦Nφ1 − π ◦Nφ2)(0)||+

∫

I

||(π ◦Nφ1 − π ◦Nφ2)
′(t)||dt =

= ||(π ◦Nφ1 − π ◦Nφ2)||AC(I,R2) = dAC(I,K)(Nφ1, Nφ2) 6

6 γ( ||φ1 − φ2||AC(I,Y )) 6 γ( ||y1 − y2||Y ),

which completes the proof of inequality (28). Now from (28) and from Lemma 1.1 we
get

d(A(x)y1, A(x)y2) = d(G(x, y1), G(x, y2)) 6 γ( ||y1 − y2||Y ).

Thus A(x) is uniformly continuous for x ∈ I, and hence A is a map from I into
L(C,K). Moreover, if the operator N satisfies (25), then in an analogous way we can
show, that the function A(x) satisfies the Lipschitz condition with the constant L for
all x from the interval I, which completes the proof. ⊓⊔

In the following theorem we shall give sufficient conditions for the Nemytskij op-
erator to be lipschitzian. Let us note, that the reflexivity of the space Y implies the
reflexivity of the space L(Y,R2) (cf. [8]).

Theorem 2.7. Let Y be a reflexive Banach space, and let C be a convex cone with
nonempty interior in the space Y . Moreover, let A and B be given functions such that
A : I → L(C,K) and B : I → K. Assume, that the functions B and I ∋ x 7→ A(x) ∈
L(C,K) are absolutely continuous (the set L(C,K) is endowed with the metric (4)).
If G : I ×C → K is of the form

G(x, y) = A(x)y +B(x), x ∈ I, y ∈ C,

then the Nemytskij operator N generated by G maps the set AC(I,C) into the space
AC(I,K) and satisfies the Lipschitz condition, i.e., there exists a constant L > 0 such
that

dAC(I,K)(Nφ1, Nφ2) 6 L||φ1 − φ2||AC(I,Y ), φ1, φ2 ∈ AC(I,C).

Proof. Let x ∈ I. Since the function π ◦ A(x) : C → R
2 is additive and continuous,

from Lemma 1.5 we get, that there is exactly one linear and continuous function
π ◦A(x) : Y → R

2 such that

π ◦A(x)(y) = [π ◦A(x)](y) for y ∈ C.

We divide the proof into five steps.

1. We shall prove that the functions

I ∋ x 7→ π ◦A(x) ∈ L(Y,R2) (29)

and A(·)y for y ∈ C are absolutely continuous. Let 0 6 α1 < β1 6 α2 < β2 6 ... 6
αN < βN 6 1. Since π◦A(βi), π◦A(αi) are additive and continuous for i = 1, 2, ..., N ,
the function π ◦ A(βi) − π ◦ A(αi) is also additive and continuous. For y ∈ C \ {0}
from (4) we get
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d(A(βi)y,A(αi)y) 6 ||y||Y dL(C,K)(A(βi), A(αi)),

which implies, that the function A(·)y is absolutely continuous for y ∈ C. Moreover,

1

||y||Y
||[π ◦A(βi)− π ◦A(αi)](y)|| 6 dL(C,K)(A(βi), A(αi)).

Thus
||π ◦A(βi)− π ◦A(αi)||L(C,R2) 6 dL(C,K)(A(βi), A(αi)).

Obviously
π ◦A(βi)− π ◦A(αi) = π ◦A(βi)− π ◦A(αi).

Hence, from Lemma 1.5 we infer

||π ◦A(βi)− π ◦A(αi)||L(Y,R2) 6 M0||π ◦A(βi)− π ◦A(αi)||L(C,K)

and thus we get

N∑

i=1

||π ◦A(βi)− π ◦A(αi)||L(Y,R2) 6 M0

N∑

i=1

dL(C,K)(A(βi), A(αi)).

Since the function I ∋ x 7→ A(x) ∈ L(I,K) is absolutely continuous, so is the function
I ∋ x 7→ π ◦A(x) ∈ L(Y,R2).

2. Now we shall prove that N maps the set AC(I,C) into the space AC(I,K).
Let us note that there exists a constant K such that

||π ◦A(x)||L(Y,R2) 6 K, x ∈ I. (30)

In fact the function (29) is continuous (even absolutely continuous) and its domain is
a compact set. Moreover, let us note, that inequality (30) implies that the function
A(x) satisfies the Lipschitz condition with the constant K.

Let φ ∈ AC(I,C) and consider the function I ∋ x 7→ A(x)φ(x) ∈ K. Moreover,
let 0 6 α1 < β1 6 α2 < β2 6 ... 6 αN < βN 6 1. Since A(x) satisfies the Lipschitz
condition with the constant K for every x from I, we get

d(A(αi)φ(αi), A(βi)φ(βi)) 6

6 d(A(αi)φ(αi), A(αi)φ(βi)) + d(A(αi)φ(βi), A(βi)φ(βi)) 6

6 K||φ(αi)− φ(βi)||Y + ||[π ◦A(αi)]φ(βi)− [π ◦A(βi)]φ(βi)|| 6

6 K||φ(αi)− φ(βi)||Y + ||[π ◦A(αi)− π ◦A(βi)]φ(βi)|| 6

6 K||φ(αi)− φ(βi)||Y +max
t∈I

||φ(t)||Y ||[π ◦A(αi)− π ◦A(βi)]||L(Y,R2),
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whence

N∑

i=1

d(A(αi)φ(αi), A(βi)φ(βi)) 6

6 K

N∑

i=1

||φ(αi)− φ(βi)||Y +max
t∈I

||φ(t)||Y

N∑

i=1

||[π ◦A(αi)− π ◦A(βi)]||L(Y,R2).

Since the functions I ∋ x 7→ φ(x) ∈ C and I ∋ x 7→ π ◦A(x) ∈ L(Y,R2) are absolutely
continuous, so is the function I ∋ x 7→ A(x)φ(x) ∈ K. Therefore, the function Nφ,
given by Nφ(x) = A(x)φ(x) +B(x), is absolutely continuous.

3. Now, let x ∈ (0, 1) and assume that the derivatives φ′(x), (π ◦ B)′(x) and (π ◦
Nφ)′(x) exist (since the functions φ, π ◦ B, π ◦ Nφ are absolutely continuous, their
derivatives exist a.e. on the interval I). We shall prove that the following formula
holds

(π ◦ [A(·)φ(x)])′(x) = (π ◦Nφ)′(x)− (π ◦B)′(x)− π ◦A(x) (φ′(x)). (31)

Since φ is differentiable at x we can write φ(x+ h) = φ(x) + hφ′(x) + hf(h), where f
is a function defined on the neighbourhood of 0 in R and with the values in the space
Y , such that limh→0 f(h) = 0. For h ∈ R with sufficiently small |h| we have

(π ◦Nφ)(x + h)− (π ◦Nφ)(x) =

= π(A(x + h)φ(x+ h)) + π(B(x + h))− π(A(x)φ(x)) − π(B(x)) =

= π(A(x + h)φ(x)) − π(A(x)φ(x)) + hπ ◦A(x+ h)φ′(x) +

+ hπ ◦A(x+ h)f(h) + π(B(x + h))− π(B(x));

whence

(1/h)[π(A(x+ h)φ(x)) − π(A(x)φ(x))] =

= (1/h)[(π ◦Nφ)(x + h)− (π ◦Nφ)(x)] − (1/h)[(π ◦B)(x + h)− (π ◦B)(x)] −

− π ◦A(x+ h)φ′(x)− π ◦A(x + h)f(h),

which implies that (31) holds.

4. Now, let x ∈ I, y1, y2 ∈ C, and let us assume that the derivatives of the functions
π◦[A(·)y1], π◦[A(·)y2], π ◦A(·) exist at the point x. It is easily seen that the inequality

||(π ◦ [A(·)y1])
′(x) − (π ◦ [A(·)y2])

′(x)|| 6 ||
[
π ◦A(·)

]
′(x)||L(Y,R2)||y1 − y2||Y (32)

holds for x ∈ I, y1, y2 ∈ C.

5. Now we shall prove that the operator N is lipschitzian. Let φ1 and φ2 belong to
the set AC(I,C). From (23) and (24) we get
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dAC(I,K)(Nφ1, Nφ2) = ||π ◦Nφ1 − π ◦Nφ2||AC(I,R2) =

= ||(π ◦Nφ1)(0)− (π ◦Nφ2)(0)||+

∫

[0,1]

||(π ◦Nφ1)
′(x) − (π ◦Nφ2)

′(x)||dx.

According to (31) and (32) we infer

||(π ◦Nφ1)
′(x) − (π ◦Nφ2)

′(x)|| 6

6 ||(π◦ [A(·)φ1(x)])
′(x)−(π◦ [A(·)φ2(x)])

′(x)||+ ||π ◦A(x)φ′
1(x)−π ◦A(x)φ′

2(x)|| 6

6 ||
[
π ◦A(·)

]
′(x)||L(Y,R2)||φ1(x)− φ2(x)||Y +

+ ||π ◦A(x)||L(Y,R2)||φ
′
1(x) − φ′

2(x)||.

It is easy to see that ||φ1(x) − φ2(x)||Y 6 ||φ1 − φ2||AC(I,Y ) for x ∈ I; thus

∫

[0,1]

||(π ◦Nφ1)
′(x)− (π ◦Nφ2)

′(x)|| dx 6

6 ||φ1−φ2||AC(I,Y )

∫

[0,1]

||
[
π ◦A(·)

]
′(x)||L(Y,R2) dx+K

∫

[0,1]

||(φ1−φ2)
′(x)||Y dx.

Moreover,

||(π ◦Nφ1)(0)− (π ◦Nφ2)(0)|| =

= ||π(A(0)φ1(0) +B(0))− π(A(0)φ2(0) +B(0))|| =

= ||π ◦A(0)(φ1(0))− π ◦A(0)(φ2(0))|| 6

6 ||π ◦A(0)||L(Y,R2) ||(φ1 − φ2)(0)||Y 6 K||(φ1 − φ2)(0)||Y

and finally
dAC(I,K)(Nφ1, Nφ2) 6 L||φ1 − φ2||AC(I,Y ),

where L = K +
∫
[0,1] ||

[
π ◦A(·)

]
′(x)||L(Y,R2) dx (> 0). ⊓⊔

Remark 2.8. It is a natural reaction to try to generalize the method of proofs of
Theorems 2.6 and 2.7 to the more general situations. Thus we are led to the question,
whether the Hausdorff completion of the R̊adström space VZ is reflexive. The positive
answer to the simplest case of the space cc(R) is given above. However, even in the
case of cc(Rn) for n > 1, this problem is still unresolved.
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